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1.

INTRODUCTION

The Onboard Autonomous Science Investigation System has been developed to enable a
rover to identify and react to serendipitous science opportunities. Using the FIDO rover
in the Mars Yard at JPL, we have successfully demonstrated a fully autonomous oppor-
tunistic science system. The closed loop system tests included the rover acquiring image
data, finding rocks in the image, analyzing rock properties and identifying rocks that
merit further investigation. When the system on the rover alerts the rover to take addi-
tional measurements of interesting rocks, the planning and scheduling component de-
termines if there are enough resources to meet this additional science data request. The
rover is then instructed to either turn toward the rock, or to actually move closer to the
rock to take an additional, close-up image. Prototype dust devil and cloud detection al-
gorithms were delivered to an infusion task which refined the algorithms specifically for
Mars Exploration Rovers (MER). These algorithms have been integrated into the MER
flight software and were recently uploaded to the rovers on Mars. © 2007 Wiley Periodicals,
Inc.

The Mars Pathfinder and Mars Exploration Rover
(MER) missions have demonstrated that mobile rov-
ers are a viable and extremely useful option for ex-
ploring the surface of other planets. The MER rovers
have traveled across kilometers of terrain and gath-

*To whom correspondence should be addressed.

ered extensive scientific data, uncovering profound
new insights into Mars’ current and past environ-
ment, the history of its rocks, and the various roles
and abundances of water. As a result of past suc-
cesses, future missions are being planned that will
send additional robotic explorers to Mars as well as to
the moon and outer planets.

Surface rovers offer scientists the ability to move
around a planetary surface and explore different ar-
eas of interest. The farther the rover can travel, the
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greater the opportunity exists for increased scientific
discovery. Most mobile robot efforts at JPL and NASA
have concentrated on navigation, manipulation, and
control. For the MER mission, process automation
has already proven valuable in engineering areas. For
example, the rovers can drive autonomously using
GESTALT (Maimone, Biesiadecki, Tunstel, Cheng, &
Leger, 2006), a stereo-based hazard avoidance pro-
gram that steers the rover away from rocks and steep
hills. It can also keep track of its position using on-
board visual odometry during some drives, which is
more robust to slippage than wheel odometry
(Cheng, Maimone, & Matthies, 2005). Due to ad-
vances in rover navigation, traverse ranges are in-
creasing at a rate much faster than communications
bandwidth. While the Sojourner rover traveled
around 100 m in the entire mission, the drive record
for the most distance covered in a single sol (Martian
day) is over 220 m set by the MER Opportunity rover.
As this trend in increased mobility continues, the
quantity of data that can be returned to Earth per
meter traversed is reduced. Thus, much of the terrain
the rover observes on a long traverse may never be
observed or examined by scientists. We present a sys-
tem developed to maximize the quality of the science
data transmitted to Earth through the use of onboard
science. This system expands onboard automation
beyond the engineering domain to the science do-
main.

The Onboard Autonomous Science Investigation
System (OASIS) system has been developed to evalu-
ate, and autonomously act upon, science data gath-
ered by in situ spacecraft such as planetary landers
and rovers (Castano et al., 2003; Castano et al., 2004;
Castano et al., 2005; Castano et al., 2006). OASIS ana-
lyzes the geologic data gathered by the rover on-
board. This analysis is used to identify terrain fea-
tures of interest and additional science gathering
opportunities. A planning and scheduling compo-
nent of the system enables the rover to take advan-
tage of the identified science opportunity by updat-
ing the command sequence to include the
opportunistic measurements. OASIS currently works
in a closed loop fashion with onboard control soft-
ware (e.g., navigation and vision) and has the ability
to autonomously perform the following sequence of
steps: analyze gray scale images to find rocks, extract
the properties of the rocks, identify rocks of interest,
retask the rover to take additional imagery of the
identified target and then allow the rover to continue
on its original mission. We have conducted a number
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of tests of the combined system and individual com-
ponents. We describe results for the system in detect-
ing and reacting to a science alert (identified science
opportunity).

Several systems and components have been de-
veloped and demonstrated for autonomous rover sci-
ence operations. Wagner et al. (2001) and Pedersen
(2001) describe a system that was successful at au-
tonomously identifying meteorites in Antarctica. Gu-
lick, Morris, Ruzon, & Roush (2001) described tech-
niques for analyzing field test data for the
Marsrokhod rover. Gilmore et al. (2000) also pre-
sented several methods developed specifically for au-
tonomous rover science. More recently, there has
been a development of methods for autonomous sci-
ence including classification of features and survey in
association with the automated identification of life
in the Atacama dessert (Smith, Niekum, Thompson,
& Wettergreen, 2005, Thompson, Smith, & Wetter-
green, 2005a; Thompson, Niekum, Smith, & Wetter-
green, 2005b).

In this paper, we first discuss several motivating
scenarios for on-board science and the OASIS system.
We then explain the components of OASIS and the
system itself after which we describe experimental
testing with the system and assess the results. Finally,
we address future work.

2. OVERVIEW OF THE OASIS SYSTEM
The OASIS system (Figure 1) consists of an analysis
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Figure 1. This diagram shows an overview of the OASIS
system and how data flows between different system
components.
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capability for identification and prioritization of data
and a planning and scheduling component to enable
response to unanticipated opportunities. The analysis
capability includes feature extraction as well as pri-
oritization.

® Feature detection: Enables extraction of fea-
tures of interest from collected images of the
surrounding terrain. This module both lo-
cates rocks in the images and extracts rock
properties (features) including shape, tex-
ture, and albedo. It also includes atmospheric
analysis.

® Data analysis and prioritization: Analyzes
the extracted features to assess the scientific
value of the data and to generate new science
goals.

® Planning and scheduling: Enables dynamic
modification of the current rover command
sequence (or plan) to accommodate new sci-
ence requests from the data analysis and pri-
oritization module. A continuous planning
approach is used to iteratively adjust the plan
as new goals arise. Opportunistic goals may
be added to the plan as long as resource and
other operational constraints are still met and
all higher priority goals can be achieved.

2.1. Feature Detection

In this work, we will describe our methods for the
analysis of scientific data acquired by a rover. Our
techniques are applicable to a wide range of data
modalities; however, our initial focus is on image
analysis as images are commonly available and pro-
vide significant information about a scene.

The first step in image evaluation is the extrac-
tion of features of interest from the scene depicted.
Features may be extracted from the original image
or from a region after segmentation. Currently
within OASIS there are two image segmentation
modules and three feature extraction modules. Each
of these modules applies general data analysis prin-
cipals to identify and characterize image features
that are representative of distinct scientific phenom-
ena.

‘ Original image ‘

¥
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Figure 2. Flow diagram for sky detection algorithm.

2.1.1. Image Segmentation
2.1.1.1. Sky detector

Both to constrain geologic analysis to the ground
and atmospheric analysis to the sky, it is beneficial to
be able to distinguish the sky from the ground, i.e.,
to identify the horizon. Our approach to sky detec-
tion is based on region growing and is composed of
four steps (Figure 2). First, we assess whether sky is
present in the image or not. If so, seeds, areas of low
variance, are identified. The lower bound of the sky
is delineated by performing edge detection on the
variance image. The seeds are then grown down to
the variance edge. Finally, gaps in the sky region are
filled. During this process we determine the skyline
(the pixels at the interface of sky and ground) and
the horizon (the image row below which there are
no sky pixels). This algorithm had approximately a
90% accuracy in testing on 301 MER Opportunity
rover images (errors were evenly distributed be-
tween false positives and misses).

2.1.1.2. Rock Detector

Detecting rocks in images is a valuable capability for
autonomous planetary science. Rocks are excellent
targets for compositional analysis with spectrom-
eters. Their shape, size, and texture hold a wealth of
geologic information. Computing the locations and
distributions of rocks facilitates autonomous rover
functions like adaptive target selection (Castano
et al., 2006), selective image return (Castano et al.,
2003), and autonomous site characterization (Th-
ompson et al., 2005a).

Research in the past decade has produced a va-
riety of strategies for detecting rocks. These include
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Figure 3. Flow diagram for rock finder algorithm.

stereo based techniques for finding rocks based on
their protrusion from the ground plane, edge-based
methods that find closed contours, template-based
methods that look for characteristic pixel patterns,
and methods that detect rocks using their shadows.
Each approach has advantages for different condi-
tions and mission requirements. For a formal com-
parison of the performance of these algorithms, see
Thompson & Castano (2007).

From the many sensor modalities expected to be
available on a rover, the rock detection algorithm ini-
tially used by the OASIS system is based on analysis
of intensity of single grayscale images. The use of
stereo is highly desirable for detection of large rocks
but is unsuitable for detection of smaller rocks; fur-
ther, it cannot be applied to images that do not come
in stereo pairs, as is the case for the MER micro-
scopic imager (MI). In contrast, rock detection on
single grayscale images applies directly to analysis
of low resolution hazard camera (hazcam), high
resolution navigation camera (navcam), any spectral
band (or combination) of the Panoramic camera
(Pancam), and the MI camera. The detection of rocks
is carried out by finding closed shapes in the image.
The image is initially normalized, filtered with an
edge preserving smoother (Tomasi & Manduchi,
1998) and its edges are enhanced using unmask
sharpening. The edges of the resulting image are de-
tected using both a Sobel and a Canny edge detec-
tors (Trucco & Verri, 1998). For each result, we search
for closed shapes (which presumably correspond to
relatively small homogeneous regions) using an
edgewalker. The results from both detectors are
combined and output as a list of contours of the
identified shapes. A flow diagram is shown in Figure
3. In testing on a set of 65 MER Spirit Pancam im-
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Figure 4. Flow diagram for cloud detection algorithm.

ages, 92% of the regions identified as rocks correctly
were rocks. In a direct comparison to several other
methods using MER Navcam images, this algorithm
was at 90% while other rock identification algo-
rithms were predominantly in the 65%-75% range.
Testing with the FIDO field test rover in the JPL
Mars Yard has yielded similar results. While having
a very low false alarm rate, making it useful for au-
tomated target selection (see Section 3.3), it has a
high miss rate (one of the lowest recall rates) and is
best not used for estimating rock abundances.

2.1.2. Feature Extraction
2.1.2.1. Cloud Detector

Clouds are an atmospheric phenomena observed by
the MER rovers on Mars. In detecting clouds, it is
assumed that large variations in the intensity of the
sky in the image correspond to clouds. Our ap-
proach to automating the detection of clouds is to
first locate the sky (equivalently, the horizon) in an
image and then determine if there are high variance
regions in the sky (Figure 4). This algorithm, which
operates on individual images (Figure 5), achieved
over 93% accuracy in testing on 210 hand-labeled
images taken by the Mars Exploration Rover Oppor-
tunity. There were three misses (false negatives) and
eleven false positives. All of the three misses were
labeled as a possible cloud (low confidence) by the
scientist performing the labeling. No high confi-
dence clouds were missed. For more details on the
algorithms and experimental testing, see Castano
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Figure 5. An example of cloud detection. Left image is
the original image and right image is the result of the
cloud detection algorithm.

et al. (2006) and Castano et al. (2007). Both the cloud
detector and the dust devil detector described in the
next section were uploaded on to the Mars Explora-
tion Rovers. Preliminary experiments with the algo-
rithms onboard have been successful.

2.1.2.2.

A second type of dynamic atmospheric phenomena
of interest on Mars is dust devils. The two most
common methods for detecting dust devils are the
comparison of two or more spectral bands of the
scene and the motion detection using a temporal se-
quence. We selected the latter as it has application to
grayscale as well as color imagery. In theory, detect-
ing rapid motion in the scene is not equal to detect-
ing dust devils. In practice, changes in a sequence of
images taken over a short time period time at a
scene on Mars are from dust devils. Dust devils are
high dust opacity features on a dusty background
and often have a faint signature in an image (Figure
6). The main challenge is to detect these often subtle
features in the presence of significant image noise.
The algorithm (Figure 7) consists of a prepro-
cessing step to reduce image noise followed by an
image averaging. The difference between the aver-
age image and the input or test image is then com-
puted. Noise effects are removed from the difference
image and blob detection is performed on the re-
maining differences. A buffered bounding box is
formed around each detection to ensure the full dust
devil is captured. The dust devil algorithm was
tested on 385 images, divided into 25 image se-
quences, acquired by the MER Spirit rover. The se-
quence lengths varied between 6 and 20 images. The
algorithm achieved an 85% accuracy rate when the

Dust Devil Detector

Figure 6. (Top) result of motion detection in an image.
Two of the dust devils are observable (third and fifth box),
while the other three occur later in the sequence.
(Bottom) contrast adjusted image highlighting dust
devils in  scene. (enhanced image  source:
http://www.lpl.arizona.edu/ lemmon/mer_dd.html).

average image was determined using sets of four
contiguous images. For more details on the algo-
rithms and experimental testing, including results
with different window sizes for the average image
(i.e., different number of images used to form the
average image), see Castano et al. (2006) and
Castano et al. (2007).

2.1.2.3.  Rock Properties

The primary focus of OASIS feature extraction and
system testing has been on geological features, spe-

‘ Original (Test) image ‘
'
’ Freprocessing ‘
v
’ Compute average mage ‘

¥

‘ Difference test image and average images

‘ Femove differences due to noise
‘ Elob finding to locate dust dewils ‘

] Dust devils identified \

Figure 7. Flow diagram for dust devil detection

algorithm.
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cifically rock properties, rather than atmospheric
phenomena. In terrestrial studies, the physical prop-
erties of rocks and soils are analyzed for information
regarding their geologic history. Physical properties
such as rock/grain size, shape, composition, sorting,
and texture are common features of rocks and soils
that can be used to infer their origin and transporta-
tion history. Using image data, the properties that
OASIS currently estimates are albedo, texture, size,
and shape.

The albedo of a rock is an indicator of the reflec-
tance properties of a surface. OASIS measures al-
bedo by computing the average gray-scale value of
the pixels that comprise the image of the rock. The
reflectance properties of a rock provide information
about its mineralogical composition. Shadows and
sun angle can both affect the gray-scale value of a
pixel. Although this can be corrected by using the
range data along with knowledge of both the sun
angle and the camera orientation, the current system
does not address these specific issues.

OASIS uses Gabor filters to estimate the visual
texture of observed rocks (Castano, Mann, & Mjol-
sness, 1999). Visual texture can provide valuable
clues to both the mineral composition and geological
history of a rock as well as soil (Mahmood, Mitchell,
& Carrier, 1974).

One of the important properties of rocks on the
surface is their size. Size can be used to identify sort-
ing and geologic contacts. We model rocks as el-
lipses (if no range data is provided) or ellipsoids (if
range data is available).

Inherent shape is another important and geo-
logically informative feature of rocks. Although the
shape of a rock is complex and often difficult to de-
scribe, significant geologic information can be ex-
tracted to better understand provenance (source of
material) and environmental conditions. Various
shape parameters are used to classify rocks in terres-
trial studies (Wadell, 1932), including elongation (or
aspect ratio), ruggedness (or angularity), and surface
area. In OASIS, an ellipse is fit to the outline of the
rock (Halir & Flusser, 1998). The eccentricity of the
fit ellipse, as well as the error, is computed (Fox,
Castano, & Anderson, 2002). In addition, the angu-
larity of each rock is assessed using a measure of
ruggedness (Hentschel & Page, 2002).

2.1.2.4. Boundary Detection

A rover on a planetary surface, such as Mars, repre-
sents a modern version of a field geologist on Earth.
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One of the most important tasks for a geologist is to
develop an understanding (spatial and temporal) of
the field area. For most mapping projects, this in-
volves going into the field area, identifying what
types of rocks are present, identifying key landforms
and landscapes, mapping geological contacts or
boundaries, developing a geologic map, and creat-
ing a model based on historical interpretations and
the dynamic processes that have shaped the land-
scape.

In the field, rocks exposed at the surface are the
only record of the surface history; their physical ap-
pearance and location testify to their environmental
settings in which they formed. Therefore, to gain an
understanding of the basic geologic history of a re-
gion, one must be able to identify where the rocks on
the surface originated from. To do this, one must
identify and map geological contacts/boundaries in
the field. The identification and mapping of geologi-
cal boundaries can range from simplistic boundary
detection, such as hills, plains, and river channels, to
complex identification of different rock and clast
types, to erosional and depositional histories of the
landscape. For the field geologists, detail examina-
tion of units provides the data for mapping; for the
rovet, it is the critical hardware interface in conjunc-
tion with the scientist back on Earth that collects the
data. For future long-range rovers on a planetary
surface, it is critical for the rover’s on-board soft-
ware to be capable of identifying simple boundaries
transitions during long traverses.

2.2. Data Analysis/Prioritization

After extraction of features, the information is used
to effect a change either in the downlink data queue
or in the rover activities. In this section, we describe
four methods used to assess the priority of the data
and the information it contains. The first method is
used for clouds and dust devils while the remaining
methods are currently used with rocks in OASIS.

2.2.1.

The first type of reaction is to set a flag when an
event of interest is detected. In the case of dust dev-
ils and clouds, the detection of an event in an image
is used to flag that image or image sequence for
downlink. Cloud detection images without clouds
need not take up downlink bandwidth. Similarly,
dust devil image sequences that do not contain dust

Detected Event
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devils do not need to be transmitted to Earth. Other
potential reactions include collecting an image se-
quence of the cloud or collecting additional types of
data when a dust devil is detected.

2.2.2. Key Target Signature

The second technique recognizes pre-specified target
signatures that have been identified by the science
team as data of high interest. This prioritization
method enables scientists to efficiently and easily
stipulate the value and importance to assign to each
feature. In OASIS, this method is used to prioritize
rocks as a function of the distance of their extracted
feature vector from the specified weighted feature
vector. Scientists are given two ways to set the target
signatures that will determine how the rocks are
ranked. In the first method, the scientist can directly
set the importance of specific feature values. For ex-
ample, the scientist may choose to prioritize rocks
based on two aspects of their shape, such as eccen-
tricity and ellipse fit. The second manner in which
scientists can specify a target signature is by select-
ing a rock with interesting properties from the set of
already identified rocks. Rocks that resemble this
particular rock in the selected properties are given a
high priority. While we have emphasized rocks, one
could envision using this method with other fea-
tures, including identification of clouds or dust dev-
ils with particular properties.

2.2.3. Novelty Detection

The third technique, novelty detection, identifies un-
usual signatures that do not conform to the statisti-
cal norm for the region. We have developed three
methods for detecting and prioritizing novel signa-
tures, representing the three dominant flavors of ma-
chine learning approaches to novelty detection:

® distance-based,

® probability-based (i.e., “generative”),

® and discriminative.

The first novelty detection method is a distance-
based k-means clustering approach. Again, we have
applied this to rock data. Initially, all available rock
data is clustered into a specified number (k) of
classes. The novelty of any rock is then the distance
of the rock feature vector to the nearest center of any

of the k clusters. The greater the rock’s distance is to
the nearest center, the higher the novelty ranking as-
signed to the rock.

The second technique is a probability-based
Gaussian mixture model, which attempts to model
the probability density over the feature space. In this
approach, the novelty of a rock is inversely propor-
tional to the resulting probability of that rock being
generated by the model learned on previous rock
data.

The final method is a discrimination-based ker-
nel one-class classifier approach. Here we treat all
previous rock data as the “positive class” and learn
the discriminant boundary that encloses all that data
in the feature space. We essentially consider the pre-
vious rock data as a cloud scatter in some
D-dimensional space, where D is the number of fea-
tures. The algorithm learns the boundary of that
cloud, so that future rock data that falls farther out-
side the cloud boundary is considered more novel.

2.2.4. Representative Sampling

The last prioritization algorithm, known as represen-
tative sampling, prioritizes data for downlink by en-
suring that representative rocks of the traversed re-
gion are returned. One of the objectives for rover
traverse science is to gain an understanding of the
region being traversed. To meet this objective, the
downlink back to Earth should include information
on rocks that are typical for a region, and not just
information on interesting and unusual rocks. A re-
gion is likely populated by several types of rocks
with each rock type having a different abundance. If
uniform sampling is employed for downlink image
selection, as opposed to our autonomous on-board
selection process, the downlinked set will be biased
towards the dominant class of rock present. This
situation may result in smaller classes not being rep-
resented at all in the downlinked data.

To provide an understanding of the typical char-
acteristics of a region, rocks are first clustered into
groups with similar properties. The data is then pri-
oritized to ensure that representative rocks from
each class are sampled. The rocks are clustered into
groups based on the features extracted from the im-
age data for each rock. To determine the classes, the
property values are concatenated together to form a
feature vector, and a weight is assigned to the im-
portance of each property. Different weight assign-
ments can be used as a function of the particular
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properties that are of interest. For example, albedo
and texture are typically used to distinguish types of
rocks, but rock size may be used if sorting is of in-
terest. Unsupervised clustering is then used to sepa-
rate the feature vectors into similar classes. We cur-
rently employ k-means due to its relatively low
computational requirements, although any unsuper-
vised method could be used. For each class of rocks,
we find the most representative rock in the class, i.e.,
the single rock in any image that is closest to the
mean of the set. We give a high priority to the image
containing this rock. The optimal number of classes
can be determined using cross-validation techniques
(Smyth, 1996).

2.3. Planning and Execution

When the data analysis software identifies science
targets of interest (e.g., a novel rock), a science alert
is generated. This results in a new science goal being
passed to the planning and scheduling module
which determines if the new goal can be accommo-
dated. If it can be, the current rover command se-
quence is modified to collect new science data.

The OASIS planning and execution module (Es-
tlin et al., 2007) is intended to run with little commu-
nication with ground. It accepts new science goals
and then modifies the current rover command se-
quence (or plan) to try and achieve as many of the
goals as possible while still respecting relevant state
and resource constraints. This module also executes
the current rover plan by dispatching commands to
the rover’s low-level control software and monitor-
ing relevant state and resource information to iden-
tify potential problems or opportunities. If problems
or new opportunities are detected, the system is de-
signed to handle such situations by using replanning
techniques to add, move, or delete plan activities.

2.3.1. Challenges for Onboard Planning and
Execution

Rovers equipped with on-board planning and ex-
ecution capabilities have the potential for increasing
science return not only by dynamically handling op-
portunistic science events but also by making se-
quencing decisions on-board with access to current
state and environment information. There are, how-
ever, a number of challenges in providing software
to support these types of autonomous operations.
To generate and/or modify its own command
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sequence for carrying out a set of science goals, the
onboard software must reason about a rich model of
science and engineering activities and the corre-
sponding resource and temporal constraints. For ex-
ample, the software has to predict power consump-
tion of variable duration activities such as
downlinks and traverses, keep track of available
power levels, and ensure that generated plans do
not exceed power limitations. Science activities may
also have varying priorities that indicate their over-
all mission value. On-board planning and execution
software must reason about these priorities and
handle new science opportunities in a dynamic and
efficient manner.

Sequence generation for rover surface missions
also raises a number of interesting challenges re-
garding spatial reasoning capabilities. One of the
dominating characteristics of rover operations is
traverses to designated waypoints and science tar-
gets. This element is especially important in future
missions that intend to explore large geographic ar-
eas. On-board planning and execution software
needs to coordinate with several levels of rover navi-
gation software to generate an efficient and achiev-
able rover plan. In addition, it is difficult to predict
duration and resource usage of rover navigation op-
erations since rovers are traveling over unknown
terrain. A large part of a rover schedule consists of
rover moving to different target locations. If time
and resource predictions for these moves are inaccu-
rate, the onboard software must be able to continu-
ously modify the schedule in order to accommodate
the new information.

Further, on-board autonomy software must ro-
bustly handle the inherent uncertainty in rover pose
estimation. The estimation of rover position is often
a constant source of error. The Sojourner Rover pro-
duced a position error of roughly 5%-10% of dis-
tance traveled and an average heading drift of 13°
per day of traverse (Mishkin et al., 1998). The MER
rovers have seen large variations in position error,
including Opportunity experiencing a slippage of
close to 100% when the rover was caught in a sand
dune (but thought it drove 40 m). Though visual
odometry software has helped the MER rovers per-
form more accurate pose estimation than wheel
odometry alone, it is typically only run in a limited
fashion due to the additional time requirements.
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2.3.2.

Planning and execution capabilities in OASIS are
provided by an integration of the CASPER (Continu-
ous Activity Scheduling, Planning, Execution and
Re-planning) continuous planner and the TDL (Task
Description Language) executive system (Estlin
et al., 2007).

In our system framework, CASPER and TDL
handle the following functionality:

Planning and Execution System Description

® (Creating an initial plan based on an input set
of goals,

® maintaining resource, temporal and other
rover operability constraints,

® executing a plan by interacting with basic
and low-level rover control functionality
(e.g., navigation, vision),

® monitoring plan execution to track plan ac-
tivity and goal status,

® dynamically modifying the current plan
based on plan activity, state, and resource up-
dates,

® performing plan optimization to reason
about soft constraints and goal priorities,

® handling dynamically identified science
goals (called science alerts) that are generated
through onboard data analysis.

Planning and scheduling capabilities for OASIS
are provided by the CASPER continuous planning
system (Chien, Knight, Stechert, Sherwood, & Ra-
bideau, 2000). Based on an input set of science goals
and the rover’s current state, CASPER generates a
sequence of activities that satisfies the goals while
obeying relevant resource, state and temporal con-
straints, as well as operation (or flight) rules. Plans
are produced using an iterative repair algorithm that
classifies plan conflicts and resolves them individu-
ally by performing one or more plan modifications."
CASPER also monitors current rover state and the
execution status of plan activities. As this informa-
tion is acquired, CASPER updates future-plan pro-
jections. Based on this new information, new con-
flicts and/or opportunities may arise, requiring the
planner to replan in order to accommodate the un-
expected events. An example of a plan in the

Definitions of plan activities, goals, resources, and states, as well
as the aforementioned constraints and rules, are encoded in a
CASPER plan model.
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Figure 8. Sample rover plan displayed in planner GUL
Plan activities are shown in upper portion of window,
where bars represent the start and end time of each activ-
ity. State and resource timelines are shown in bottom por-
tion of the screen and show the effects of the plan as time
progress. Time is depicted as advancing from left to right.

CASPER GUI that was executed during a rover
demonstration is shown in Figure 8.

The executive functionality in OASIS is per-
formed by the TDL executive system (Simmons &
Apfelbaum, 1998). TDL was designed to perform
task-level control for a robotic system and to medi-
ate between a planning system and low-level robot
control software. It expands abstract tasks into low-
level commands, executes the commands, and moni-
tors their execution. TDL also provides direct sup-
port for exception handling and fine-grained
synchronization of subtasks. TDL is implemented as
an extension of C++ that simplifies the development
of robot control programs by including explicit syn-
tactic support for task-level control capabilities. It
uses a construct called a task tree to describe the tree
structure that is produced when tasks are broken
down into low-level commands.

Currently, OASIS has a separate planner and ex-
ecutive and, thus, this framework does share simi-
larities to other three-layer architecture approaches
(Gat, 1991; Bonasso et al., 1997; Alami, Chatila, Fl-
eury, Ghallab, & Ingrand, 1998). However, as com-
pared to these approaches where planning is typi-
cally done in a batch fashion and takes on the order
of minutes to hours, this integration uses a continu-
ous planning approach, where plans are updated
and repaired in a matter of seconds. This enables the
use of planning techniques at a finer timescale for
tracking the progress of plan execution, quickly
identifying potential problems in future parts of the
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plan, and responding accordingly. As we expect mi-
nor portions of the plan to change frequently, we use
a lightweight plan runner to dispatch activities to
the executive a few seconds before the task’s sched-
uled start time. This approach differs from the more
common batch approach of turning the entire plan
over to the executive for execution. Executive tech-
niques are then used in only reactive situations or at
times where procedural reasoning is preferred.

Another related approach directed towards
rover command generation uses a contingency plan-
ner (CPS) to schedule rover operations where the
generated plan allows both temporal flexibility and
contains contingency branches at points where the
rover activity is predicted to have above a certain
probability of failure. (Bresina, Golden, Smith, &
Washington, 1999). Contingent command sequences
(or plans) are produced on the ground and only the
executive, which executes the sequence, is on-board
the rover. This approach enables planning to be per-
formed without the strict processing constraints that
are often present when running on-board a space-
craft. However, typically, only a limited number of
contingencies can be preplanned due to the size and
complexity issues. Further, it may be difficult to pre-
dict probable points of plan failure, especially when
rovers drive through unknown terrain. The OASIS
system approach provides more flexibility to handle
new situations since the planner is on-board and can
respond to a much large number of problem (or for-
tuitous) situations. Further, other work has shown
the feasibility of using an automated planner on-
board a spacecraft, even when only very limited pro-
cessing and memory are available (Chien et al.,
2005).

2.3.2.1.

To handle opportunistic science, we enabled the OA-
SIS planning and execution module to recognize and
respond to science alerts, which are new science op-
portunities detected by on-board data-analysis soft-
ware. For example, if a rock is detected in navigation
imagery that has a previously unseen shape or tex-
ture, a science alert may be generated to take addi-
tional measurements of that rock.

Science alerts can have different levels of reac-
tion from the planning and execution system. The
most basic reaction is to adjust the rover plan so that
the rover holds at the current position and the
flagged data is sent back to Earth for further analysis

Science Alerts
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at the next communication opportunity. The next
level of reaction is to collect additional data at the
current site before transmitting back to Earth. A fur-
ther step is to have the rover alter its path to get
closer to objects of interest before taking additional
measurements. These operations provide new data
that could not be obtained through analysis of the
original image. Each of these levels of reaction has
been demonstrated for the OASIS system in simula-
tion and with rover hardware (more details are
given in Section 4).

How the plan is modified to accommodate the
alert depends on the type of alert that is considered.
When a science alert is received that requires hold-
ing at the current position until data is communi-
cated with Earth (called a stop and call home alert), the
system alters the plan to remove or abort any activi-
ties that are not critical and wait for the next com-
munication opportunity. If activities are currently ex-
ecuting, the planner requests the executive
components of OASIS to abort them. If activities are
scheduled in the future, the planner deletes them
and resolves any inconsistencies created by these de-
letions.

To handle a science alert that requests additional
measurements (called a data sample request alert), the
planner must generate a plan that achieves the new
goals without deleting existing activities or causing
conflicts that cannot be resolved (e.g., scheduling
more activities than can be executive over a certain
time window). Data sample requests are also as-
sumed to have an assigned priority, which is repre-
sentative of their scientific value. This priority is cur-
rently assigned by the onboard data analysis system.
A simple linear priority scheme is used to reflect a
request’s value and is chosen by the data prioritiza-
tion algorithm being employed. For example, if the
analysis algorithm is looking for rocks with a certain
set of properties, then rocks with features that
closely match the target property set will be as-
signed high priorities.

To handle a data sample request, the planner
must be able to add a new science observation and a
new move command to correctly place the rover in
position to take the observation. This process is done
through the use of planning optimization capabili-
ties. Because it may not be possible to accommodate
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Figure 9. Rocky 8 rover (left), FIDO rover (middle), Rocky 7 rover (right).

all alerts,” a science alert is represented as an op-
tional planning goal with a particular priority. As an
optional goal, its achievement is not mandatory but
may improve the plan’s optimization score if in-
cluded in the plan. Before attempting to handle a
science alert, CASPER protects the current plan by
saving a copy before optimization. If CASPER can
handle a new science alert (e.g., by adding addi-
tional science measurements) without causing other
negative affects, such as resource over-subscriptions
or the deletion of ground-specified (mandatory) sci-
ence goals, then the new plans optimization score is
evaluated. If the new plan has an optimization score
that is higher than the original plan, then the new
plan that accommodates the science alert is used. For
more information on how CASPER reasons about
plan optimization please see (Rabideau, Engelhardt,
& Chien, 2000). CASPER also is given a time limit to
search for a new plan that handles the science alert.
If a new plan is not found under the time limit, the
previous plan is restored and the science alert re-
mains unsatisfied. This time limit can be adjusted
based on user preferences and available processing
time.

2.3.3. CLARAty Robotic Architecture

In order to test OASIS with rover hardware, the
planning, scheduling, and execution component is
integrated with the Coupled Layered Architecture
for Robotic Autonomy (CLARAty) (Nesnas et al.,
2003), which is being developed at JPL in response to

’In system testing, a number of different situations have been
evaluated including allowing the data analysis component to gen-
erate a large set of data sample requests that cannot all be accom-
modated due to plan limitations on resources and time.

the need for a robotic control architecture that can
support future mission autonomy requirements.
CLARAty is a unified and reusable robotic software
architecture that provides a large range of basic ro-
botic functionality and simplifies the integration of
new technologies on different robotic platforms.
Through CLARAty, various OASIS components
have been tested with several hardware platforms
including Rocky 7, Rocky 8, and FIDO (shown in
Figure 9). For the testing reported in this paper, the
FIDO rover was primarily used and the OASIS rock-
finder and planning and execution software were di-
rectly integrated with CLARAty and handled inter-
action with other key CLARAty elements that were
required to run with rover hardware. Other pieces of
OASIS (such as feature extraction) are in the process
of being integrated but were not integrated for these
tests. Through this integration, the OASIS system in-
teracted with several technologies provided by
CLARALty, which operate onboard the rover. These
software components are locomotion, position esti-
mation, navigation, and stereo vision processing.

The locomotion module coordinates a set of mo-
tors to steer and drive the rover’s wheels, enabling
the rover to move across the terrain. The FIDO rover,
which was used in these tests, is a six-wheeled ve-
hicle with all-wheel steering and driving enabling
the rover to turn in place, drive in straight lines,
drive in arcs, and perform crab maneuvers in which
the rover moves in one direction while facing an-
other.

As the rover traverses across the landscape, po-
sition estimation software attempts to estimate the
rover’s current location and orientation relative to a
global and a local reference frame. Varying texture in
the sand results in different amounts of wheel sink-
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age which, in turn, results in variance in the effective
wheel radius of the rover. In addition, the rover of-
ten encounters rocks of varying sizes, shapes, and
textures which results in wheel slippage as it drives
over the rocks. The position estimation algorithm in
the current system uses an IMU (Inertial Measuring
Unit) to estimate rover attitude (roll, pitch, and
heading) and wheel odometry to estimate linear ve-
locity. The IMU helps detect slippage that could not
be detected with wheel odometry alone.

Navigation software is used to guide the rover
to a goal location while avoiding obstacles. OASIS
uses the Morphin navigation system developed at
CMU (Urmson et al., 2003). As part of the hazard
avoidance algorithm, the navigator acquires stereo
images from the rover hazard cameras to detect ob-
stacles in the rover’s path. The front camera images
are also passed to the OASIS rock detection process,
running in a separate thread.

Both the navigator and the OASIS rock detection
algorithm make use of the JPL stereo vision package
to acquire range data for the hazard camera images.
The navigator uses stereo processing to generate a
point cloud representing the terrain around the
rover. OASIS uses range data to identify the loca-
tions of identified rocks. Rocks are first located in a
coordinate frame relative to the center of the rover
and then translated into the global reference frame
using the current position estimate.

3. ONBOARD SCIENCE FOR MAXIMIZING
MISSION SCIENCE RETURN

On-board science or science autonomy refers to the
capability of analyzing the scientific content of data
on-board a spacecraft and using this information to
autonomously take intelligent actions. The capability
can be used to increase the science return of a mission
by ensuring that high science content data reaches
scientists on Earth. With the constrained computing
resources, time, power, and downlink bandwidth on
planetary rovers, onboard science can be used for ef-
ficient allocation of a rover’s time and bandwidth re-
sources. The OASIS system for on-board science can
achieve this through opportunistic science during a
traverse, campaign science, end-of-day science, and
prioritization of data for downlink.
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3.1. Opportunistic Traverse Science

One mission concept for future rover exploration is
to focus the scientific investigation on multiple sci-
ence sites that are located several rover traverse days
away from each other. This scenario allows for a
deep and concentrated exploration of each science
site; however, in order to expeditiously drive the
rover to each of the sites, scientists cannot perform
detailed examinations of the terrain between each
site. This is where traverse science, the capability of
autonomously studying the terrain during the long
traverse, can be beneficial.

OASIS can be used to identify and react to sci-
ence opportunities along a traverse. As explained in
the previous sections, the system can identify fea-
tures that scientists have specified as important as
well as novel features (see, for example, Figure 10)
and then, if resources are available, autonomously
take additional measurements of that feature.

Figure 10. Image credit NASA /JPL/Cornell, JPL archive
number PIA07269. On January 2, 2005, NASA’s Mars Ex-
ploration Rover Opportunity found this iron meteorite on
the surface of Mars—close to the heat shield that the
spacecraft dropped on its descent to the surface. OASIS
can train the rover to look for meteorites, or other types of
rock, using the key target signature data analysis
technique.
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3.2. Campaign Science

OASIS can be used not only during a traverse, but
also for campaigns to monitor for science events or
features of interest. As previously described, proto-
type algorithms for dust-devil detection and cloud
detection that were developed for OASIS have been
refined for MER and integrated into the MER flight
software. These algorithms allow selective transmis-
sion of data containing the features of interest.
Ground testing indicates that a 4X increase in the
number of images with science features can be ex-
pected through the use of these algorithms.

3.3. Automated Target Selection/End-of-Day
Science

A third benefit of onboard science data analysis is
the identification of targets both at the end of the
day and during the course of a drive. A number of
rover remote sensing instruments have a very nar-
row field-of-view and, thus, require selection of spe-
cific focused targets for sampling. Such instruments
include mini-TES (thermal emission spectrometer),
LIBS (laser induced breakdown spectrometer), and
infrared point spectrometers. The typical scenario
for selecting targets for these instruments is to
manually identify the targets using data that has
been previously downloaded. This means that tar-
gets can only be selected from the site for which data
has already been downloaded the night before (thus,
at the end of the day, the rover sits and waits until
the next morning for instructions on which rocks to
sample).

Rather than waiting until the next day, some
samples could be collected by “blindly” targeting
the instrument after a traverse day. However, by
analyzing image data on-board, targets for these in-
struments can be identified automatically. As part of
the OASIS system, we have implemented a method
for automatically selecting rock targets for sampling
at the end of a traverse. This could be used, for ex-
ample, on the Mars Science Laboratory (MSL) to se-
lect targets for the ChemCam instrument (which in-
cludes a LIBS) to sample.

The approach is to first identify the rocks in the
scene using the rock finder in the feature extraction
component. Points on these identified rocks are then
selected for targeting (Figure 11).

Figure 11. OASIS selects five potential targets for the
ChemCam instrument to sample. Autonomously selecting
targets vs blind sampling should greatly increase the
chances of accurately targeting a rock.

3.4. Onboard Prioritization of Data

Finally, one of the primary motivations for the de-
velopment of OASIS was to prioritize data for
downlink. In this application, OASIS analyzes data
the rover gathers, and then prioritizes the data based
on criteria set by the science team. Three prioritiza-
tion methods have been developed:
®  Representative sampling (this method ensures
that at least one image of every rock type en-
countered that sol is returned to Earth),

® Key target signature (the rover looks for
science-specified rock types and gives images
with those rocks a high priority for down-
link), and

®  Novelty detection (if the rover sees a rock type
that it has not seen before, it assigns that
rock’s image a high downlink priority).

At the next opportunity for transmitting data
back to Earth, the data is already prioritized—
ensuring that the most valuable data is sent first.

4. OASIS SYSTEM TESTING

To evaluate our system, we have performed a series
of tests over several years both in simulation and us-
ing rover hardware in the JPL Mars Yard. These tests
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Figure 12. Sample plan shown in the Grid Visualization
Tool (GriViT). Green lines show the planned path of the
rover, blue lines show the real path, and pink lines show
the path that is currently executing.

covered a wide range of scenarios that included the
handling of multiple, prioritized science targets, lim-
ited time and resources, opportunistic science events,
resource usage uncertainty causing under- or over-
subscriptions of power and memory, large variations
in traverse time, and unexpected obstacles blocking
the rover’s path.

Our testing scenarios typically consisted of a
number of science targets specified at certain loca-
tions. A map was used that would represent a sample
mission-site location where data would be gathered
using multiple instruments at a number of locations.
Figure 12 shows a sample scenario that was run as
part of these tests. This particular map is of the JPL
Mars Yard. The prespecified science targets repre-
sented targets that would be communicated by sci-
entists on Earth. These targets were typically priori-
tized and for many scenarios constraints on time,
power, or memory would limit the number of science
targets that could be handled. A large focus of these
tests was to improve system robustness and flexibil-
ity in a realistic environment. Towards that goal, we
used a variety of target locations and consistently se-
lected new science targets and/or new science target
combinations that had not been previously tested.

Another primary scenario element was dynami-
cally identifying and handling opportunistic science
events. For these tests, we have concentrated on a
particular type of event, which was finding rocks
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Figure 13. Sample image that was taken in response to a
science alert indication identification of a rock with white
albedo on the JPL FIDO rover.

with distinct features. Specifically, we have tested the
feature detection of rocks with certain albedo levels
and shape features. These settings were an example
of using the data analysis algorithm for target signa-
ture, where a particular terrain signature is identified
as having a high interest level. If rocks were identified
in hazard camera imagery that had a certain interest
score, then a science alert was created and sent to the
planner. Science alerts would typically come in dur-
ing rover traverses to new locations, but it was also
possible for them to come in while the rover was at a
science target location due to a small lag caused by
image processing time. If a science alert was detected,
the planner attempted to modify the plan so an ad-
ditional image of the rock of interest was acquired. A
sample image that was taken in response to a science
alert is shown in Figure 13.

4.1. Testing in Simulation

Since testing with rover hardware can be an expen-
sive and time-intensive process, we ran a large num-
ber of tests for the planning and execution module
in simulation using a relatively simple simulator.
This simulator could execute rover sequence com-
mands and simulate their effects at a coarse level of
granularity. For instance, the simulator handled
items such as rover position changes and energy us-
age over straight-line movements, but did not simu-
late obstacle avoidance or rover kinematics. Another
capability that was used in simulation was trigger-
ing science alerts at preset or random times. This
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capability helped in evaluating the software’s capac-
ity to correctly handle different opportunistic science
scenarios.

To easily run and evaluate large numbers of
tests, we also invested in a testing infrastructure,
which allowed tests to be run offline and automati-
cally gathered statistics, including items such as
number of plan conflicts found and resolved, plan
generation and replanning time, number of goals
satisfied, overall plan traverse distance, and plan op-
timization scores. This testing infrastructure also en-
abled the automatic creation of mpeg movies that
showed plan changes using snapshots of a plan vi-
sualization tool. This tool showed the results of plan
generation and execution on an overhead map of the
world, and could be used for both simulated and
hardware testing. An example plan snapshot dis-
played by this tool is shown in Figure 12. Planning
and execution results were evaluated by examining
gathered statistics and by viewing created mpegs to
flag incorrect or nonoptimal behavior.

4.,2. Testing with Rover Hardware

In addition to testing in simulation, a large number
of tests with all OASIS software modules were run
in the JPL Mars Yard (shown in Figure 14) using dif-
ferent rover hardware platforms. For the past year
and for the final demonstration, the FIDO rover
(shown in Figure 9) was used for the majority of
tests. System setup and the specific rover control
software used for capabilities such as navigation and
vision was described in Section 2.3.3.

Tests in the Mars Yard typically consisted of
20-50 m runs over a 100 m? area with many ob-
stacles that cause deviations in the rover’s path.
Most rocks in the Mars Yard are dark in color, thus,
for our albedo testing, we brought in a number of
whiter rocks to trigger science alerts during rover

Figure 14. The JPL Mars Yard with terrain of various
difficulties.

traverses. Science measurements using rover hard-
ware were always images, since other instruments
were not readily available (such as a spectrometer).
However, different types of measurements were in-
cluded when testing in simulation.

4.3. Lessons Learned

Integrating and testing with hardware and required
control software (e.g., for navigation) introduced a
number of challenges. In this section, we will briefly
outline a few of the key lessons learned during this
process. One primary challenge was that the testing
and demonstration of our on-board science system
required a number of underlying components to
properly perform and support our software. An im-
portant lesson for running testing with rover hard-
ware is that a significant amount of time must be
allocated to tune and test supporting software and
hardware components. Though the majority of sup-
porting components were provided through CLAR-
Aty, many had not been run through extensive test-
ing in the environment that we wished to
demonstrate OASIS. Some key components that we
spent a large amount of time testing for our use in-
clude the FIDO rover cameras, navigation software,
and position estimation software. This process was
further complicated when supporting software had
large numbers of tunable parameters and, since
some supporting software had only been tested in
certain environments or exercised in unit testing, our
testing process also uncovered several problems (or
bugs) in supporting software that had not been pre-
viously discovered. In the future, we hope to have
more access to the people who developed the sup-
porting technology and have direct support in cor-
rectly tuning their application for our needs. How-
ever, since this will not always be the case, we expect
future work with hardware testing to consistently
require time for tuning supporting technology.
Another lesson learned was the value of per-
forming a large number of tests in simulation, even
with a relatively simple simulator. To test the ability
of the planning system to handle science alerts un-
der varying conditions, we invested in a testing in-
frastructure that allowed large numbers of tests to be
run offline using a simple simulator. This simulator
tracked items such as resource usage and rover po-
sition, but did not simulate higher fidelity items
such as obstacle avoidance or stereo image process-
ing. During these tests certain factors were varied
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such as the number of science alerts, available re-
sources, rover speed, etc. This allowed the planning
and execution software to be exercised on a large
variety of situations and allowed many bugs to be
caught before hardware testing was even performed.
Furthermore, problematic situations that were dis-
covered in hardware testing could often be easily
reproduced and debugged by using a simulator.
Simulated testing also provided an easy way to run
large numbers of tests that would have been impos-
sible to run exclusively on hardware, due to the time
required to complete them. Overall, our testing in
simulation made our system significantly more ro-
bust to variations in resource usage, rover position,
activity execution time, and frequency of science
alerts. Such robustness is particularly important
when handling rover operations since factors such
as traverse time, power usage, and even possible sci-
ence opportunities are difficult to predict. We should
note that, although testing using a simple simulator
was very valuable, it would have also been valuable
to perform some testing with higher fidelity simula-
tion. For instance, when testing with rover hard-
ware, obstacle avoidance software often performed
differently depending on variations in rover posi-
tion, sun angle, etc. Since we could not easily repro-
duce this behavior in our simple simulator, we had
to rely on our hardware tests to ensure this behavior
did not cause problems or unexpected situations for
the OASIS software.

Furthermore, running with hardware often al-
lowed a perspective that was difficult to attain
through simulated testing. For example, the accu-
racy of rover turns towards new science opportuni-
ties was much easier to judge when running with
hardware.

5. TESTING RESULTS

Here we report results from a set of ten runs with the
FIDO rover that were conducted on four different
(nonconsecutive) days. The runs had an average of 13
images. The criteria specified was based on albedo—
identify rocks that were white. An example is shown
in Figure 13. The goal was to detect targets if they are
within approximately 3 m of the forward field of
view of the rover as it proceeds along the traverse.
Each run had between one and seven targets that the
rover encountered within the goal detection range.
Over the ten traverse test runs, this consisted of 40
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total target rocks. Thirty-six of these targets were de-
tected (85% detection rate). There were no false
alarms during any of the ten runs.

The 85% detection rate indicates how many of the
targets were identified at some time over the course
of the traverse. A target may be imaged multiple
times during the traverse as the rover approaches and
drives by the rock. Over the ten runs, there were 82
instances of targets appearing in an image within the
detection range. Individual targets were imaged be-
tween one and six times. Of the six targets that were
missed, three of these appeared in a single image and
three appeared in two images. No target that ap-
peared in more than two images was missed.

5.1. OASIS Component Run Times on FIDO

As part of our testing, we gathered preliminary sta-
tistics on the run time of key OASIS components.
While we have not spent significant time optimizing
the performance of these components, the numbers
provide a general idea of current performance and
provide a reference to track future improvements. In
a representative run, the OASIS rockfinder pro-
cessed 11 hazcam images resulting in five science
alerts being sent to the planner. The rockfinder was
run on a 233 Mhz Pentium processor running Vx-
Works 5.5 with 128 MB of RAM. Rockfinder took an
average of 53 s to process each image and found
about nine rocks per image with a total of 103 rocks
being identified for the 11 images. The OASIS fea-
ture extraction component was run on a 930 Mhz
Pentium processor running Linux 2.4 with 256 MB
of RAM. For these tests, albedo and shape informa-
tion were extracted for each rock. For the 11 images
processed, feature extraction averaged 0.5 s per im-
age. The planning and scheduling component ran on
a 2.5 GHz Pentium processor running Linux 2.4 with
1 GB of RAM. In handling the five science alerts, the
planner spent an average of 6 s generating a plan for
each alert.

6. CONCLUSIONS AND FUTURE WORK

We have demonstrated an autonomous science sys-
tem in the field conducting opportunistic science. By
integrating data analysis and planning capabilities,
the resulting system can operate in a closed-loop
fashion. This framework enables new science targets
to be addressed onboard with little or no communi-



396 « Journal of Field Robotics—2007

cation with Earth. An important contribution of this
work is closing the loop between the sensor data col-
lection, science goal selection, and activity planning
and scheduling. Current approaches require human
analysis to determine goals and to manually convert
the set of high-level science goals into low-level rover
command sequences. By integrating these compo-
nents onboard, we enable a rover to function autono-
mously, as if a scientist were always in communica-
tion. This type of capability should dramatically
increase the science return of future rover missions.

In the future we will expand the features that the
system can recognize. We also would like to incorpo-
rate information from other sources such as from or-
bital data in assessing the surface features such as
boundaries. Currently, the system does not explicitly
recognize the same target or feature from different
viewpoints. This is an aspect of information that
could be accumulated onboard. For example, obser-
vations of a feature as the rover approaches it could
be used to update the information on the interest
level of the feature. Similarly, when a feature is
viewed from a different angle, this would be valuable
information. In addition, information from different
instruments could be incorporated into the onboard
analysis to identify regions and individual features of
high science interest.

The Deep Space Network will remain a con-
straining resource for future deep space missions as
the number of high bandwidth missions increases.
Traditional data compression can provide a valuable
mechanism for increasing the amount of useful data
returned; however, a limited amount of compression
is possible before distortion levels become intolerably
high. Science return can be maximized by returning
the data with the highest science content possible.
The use of onboard analysis to identify opportunities
and select the data with the highest scientific interest
will be a critical functionality to maximize science re-
turn on future deep space missions with high data
volume instruments.
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